kontakt@camo.nrw +49 202 / 439 1164

[Paper] Bayesian Confidence Calibration for Epistemic Uncertainty Modelling

Modern neural networks have found to be miscalibrated in terms of confidence calibration, i.e., their predicted confidence scores do not reflect the observed accuracy or precision. Recent work has introduced methods for post-hoc confidence calibration for classification as well as for object detection to address this issue. Especially in safety critical applications, it is crucial to obtain a reliable self-assessment of a model. But what if the calibration method itself is uncertain, e.g., due to an insufficient knowledge base? We introduce Bayesian confidence calibration – a framework to obtain calibrated confidence estimates in conjunction with an uncertainty of the calibration method. Commonly, Bayesian neural networks (BNN) are used to indicate a network’s uncertainty about a certain prediction. BNNs are interpreted as neural networks that use distributions instead of weights for inference. We transfer this idea of using distributions to confidence calibration. For this purpose, we use stochastic variational inference to build a calibration mapping that outputs a probability distribution rather than a single calibrated estimate. Using this approach, we achieve state-of-the-art calibration performance for object detection calibration. Finally, we show that this additional type of uncertainty can be used as a sufficient criterion for covariate shift detection. All code is open source and available at https://github.com/EFS-OpenSource/calibration-framework

Verwandte Arbeiten

SAIAD 2021

[Paper] Towards Black-Box Explainability with Gaussian Discriminant Knowledge Distillation

In this paper, we propose a method for post-hoc explainability of black-box models. The key component of the semantic and quantitative local explanation is a knowledge distillation (KD) process which is used to mimic the […]

Mehr erfahren

[Paper] “Help, Accident Ahead!”: Using Mixed Reality Environments in Automated Vehicles to Support Occupants After Passive Accident Experiences

Currently, car assistant systems mainly try to prevent accidents. Increasing built-in car technology also extends the potential applications in vehicles. Future cars might have virtual windshields that augment the traffic or individual virtual assistants interacting […]

Mehr erfahren

[Paper] Multivariate Confidence Calibration for Object Detection

Unbiased confidence estimates of neural networks are crucial especially for safety-critical applications. Many methods have been developed to calibrate biased confidence estimates. Though there is a variety of methods for classification, the field of object […]

Mehr erfahren